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Perfectly Matched Layer Absorbing
Boundary Condition for Dispersive Medium
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Abstract—Berenger’s perfectly matched layer (PML) absorbing
boundary condition (ABC) has been found very effective for
truncating the unbounded spatial domain in the finite-difference
time-domain (FDTD) computation. The PML ABC was originally
introduced for a free-space spatial domain and later extended to
a lossy medium using the stretched coordinates. In this paper,
we propose a novel PML ABC for a dispersive medium in an
ordinary Cartesian coordinate. It will be also shown that the PML
for the lossy medium can be easily derived from our formulation.

Index Terms—Absorbing boundary condition, dispersive med-
ium, FDTD, perfectly matched layer.

I. INTRODUCTION

T HE PERFECTLY matched layer (PML), proposed by
Berenger, behaves as an excellent absorber in the finite-

difference time-domain (FDTD) computation for electromag-
netic scattering and radiation problems [1], [2]. The PML
concept was first introduced for free-space or lossless medium.
It has been demonstrated in many numerical applications that
the PML can absorb the outgoing propagating waves very
effectively, but cannot effectively absorb the evanescent waves
[3]. Fang and Wu modified the original PML in order to apply
to a lossy medium [4], [5] in which the stretched coordinates
[6] were used. Gedney extended a uniaxial PML [7] to lossy
and dispersive media [8]. It has been shown that these PML’s
can effectively absorb both propagating and evanescent waves.

In this paper, a novel ABC for the dispersive medium
is derived in the ordinary Cartesian coordinate, based on
the concept of Berenger’s PML. First, we derive the PML
ABC’s for Debye and Lorentz dispersions. These ABC’s
are extended to a more general case. It is also shown that
the PML for lossy medium can be easily derived from our
PML formulation as a special case. While our discussion
will be restricted to spatially uniform frequency-dependent
permittivities, frequency-dependent magnetic materials can be
also treated by using the same approach described in this letter.

II. M ATCHING CONDITION FOR DISPERSIVEMEDIUM

Since similar results can be obtained for either two- as well
as three-dimensional cases, we consider the two-dimensional
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TE-case with field components , , and . As is analo-
gized from the conventional PML equations for nondispersive
lossless medium, the displacement current terms
should be replaced by , and then the PML equations
for the dispersive medium are written as follows:

(1)

(2)

(3)

(4)

where

(5)

and is the complex permittivity of the dispersive PML
medium. The equivalent time-domain relation can be repre-
sented as a convolution integral.

While our discussion is concentrated on the case that only
the permittivity of the FDTD space has frequency dependence,
the similar results will be obtained for the case thathas
frequency dependence by replacing the first terms of (3) and
(4) with and , respectively.

Following the approach in [1], a wave admittance of
this PML medium is given by

(6)

where, for and

(7)

Therefore, the impedance matching conditions of the disper-
sive PML for the medium whose permittivity and permeability
are and , are given by

(8)

From (8) the permittivity in the dispersive PML is a
function of the conductivities or , therefore, the flux
density (5) is changed as , for and .
However, the subscriptions and will be omitted in the
following discussions because the same conditions for both
and are satisfied.
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III. SINGLE-ORDER POLE DISPERSION

In this section, we will derive the PML ABC for the disper-
sive media whose complex permittivities are all described by
the equations with the first-order poles. These dispersions can
be used to model a wide variety of materials and are easily
analyzed by using the recursive convolution scheme [9].

A. Debye Dispersion

The permittivity of the Debye material is describe by the
following Debye equation:

(9)

where is the static permittivity at is the infinite
frequency permittivity, and is the relaxation time.

In order to derive the dispersive PML medium, we assume
the permittivity in the PML in the form

(10)

Substituting (10) in (8), we obtain the following relations:

(11)

(12)

B. Lorentz Dispersion

The permittivity of the Lorentz dispersion is described as

(13)

where is the resonant frequency and the damping
coefficient. Letting , and expanding the above equation
into a partial fraction, we obtain

(14)

where and are two complex conjugate poles of (13), and
we assume that for simplicity.

Comparing (14) and (9) we find that the same discussion
as the Debye dispersion can be applied, and we obtain the
dispersive PML for Lorentz dispersion as follows:

(15)

where

(16)

The relationship with respect to the electric and magnetic
conductivities is the same as (12).

C. Multipole Dispersion

The above discussion can be easily extended to a more
general case. We consider here the following dispersion:

(17)

with the condition that , and for all
. In this case, we can obtain the following dispersive PML:

(18)

where

(19)

and the relation with respect to the electric and magnetic
conductivities is again the same as (12).

D. Special Case

Up to this point the permittivity of the FDTD space has been
described by a first order pole. However, the above discussion
cannot be applied when the conductivity term that is equivalent
to an additional first-order pole at exists, because the
coefficient becomes infinity. Therefore we consider here
the following dispersion:

(20)

In this case the higher order term must be added to the
permittivity of dispersive PML because the matching condition
(8) is not satisfied. Then we let

(21)

and substituting (21) in (8), we obtain

(22)

The coefficient is given by (19), and the relation between
and is the same as (12).

If we let as a special case, that is the FDTD space
is filled with the lossless permittivity and conductivity terms,
then we can easily obtain the PML medium as follows:

(23)

Substituting (23) in the equivalent frequency domain equa-
tion of (1) we obtain

(24)
This is very similar to the time domain field equation for the
Generalized PML discussed in [4].
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Fig. 1. Theoretical reflection coefficients of conventional and dispersive
PML’s. The parameters areM = 2; L�x = 4 � 10�4; !p = 2� � 106;

"s = 10, and"1 = 4. The required reflection coefficient is set atjRj = �60

[dB]. The effective permittivity is"e = "1.

Fig. 2. Reflected waves at a corner of FDTD space. The parameters are
M = 2; jRj = �200 [dB], "s = 9; "1 = 4; "e = "1; !p = 2� � 109,
and�x = �y = 10 mm.

IV. REFLECTION FROM THE PML

Following [1], the reflection coefficient at the PML bound-
ary can be easily obtained. When the conductivity profile in
the PML is chosen as , the resultant
reflection coefficient of L-layered PML backed by the perfect
conductor for plane wave at normal incidence is approximated
by

(25)

where is the velocity in the FDTD space.
The value of cannot be determined from above equa-

tion because the absolute of depends on the frequency as
yet. In all numerical examples shown here, was deter-
mined from by using a frequency-independent effective
permittivity .

Fig. 1 shows the theoretical reflection coefficients for con-
ventional and dispersive PML media. The dispersion is Debye
type. Fig. 2 shows the reflected waves at a corner of FDTD
space when the magnetic line current is located at the center of
200 200 computation space including the 16-layered PML’s.
It is found that the significant absorption can be achieved.
While not shown here, the significant improvement is obtained
for other dispersions.

V. CONCLUSION

The PML ABC for the spatially uniform dispersive medium,
which is an extension of the original Berenger’s PML ABC,
has been proposed. The PML ABC’s for Debye and Lorentz
dispersions, and more general cases have been derived. It has
been also shown that the PML for lossy medium can be easily
derived from our PML as a special case. While our discussion
was restricted to the frequency-dependent permittivities, the
extension to the frequency-dependent magnetic materials is
straightforward by using the same approach discussed in this
paper.
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