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Perfectly Matched Layer Absorbing
Boundary Condition for Dispersive Medium
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Abstract—Berenger’s perfectly matched layer (PML) absorbing  TE-case with field components,, £, andH.. As is analo-
boundary condition (ABC) has been found very effective for gized from the conventional PML equations for nondispersive
truncating the unbounded spatial domain in the finite-difference lossless medium, the displacement current terdE /ot

time-domain (FDTD) computation. The PML ABC was originally .
introduced for a free-space spatial domain and later extended to should be replaced byD/dt, and then the PML equations

a lossy medium using the stretched coordinates. In this paper, for the dispersive medium are written as follows:

we propose a novel PML ABC for a dispersive medium in an aD 8(H T H )
ordinary Cartesian coordinate. It will be also shown that the PML LA oayEr = 2 zy 1)
for the lossy medium can be easily derived from our formulation. ot Jdy
Index Terms—Absorbing boundary condition, dispersive med- % + 04 By = _8(Hm + sz) )
ium, FDTD, perfectly matched layer. at dr
OH ., tot H OE, 3)
4] at Ogptlze a.’IZ'
|. INTRODUCTION OH., OF
p—— oy H.y = - (4)
HE PERFECTLY matched layer (PML), proposed by ot Y ay

Berenger, behaves as an excellent absorber in the finitg-
difference time-domain (FDTD) computation for electromag-
netic scattering and radiation problems [1], [2]. The PML D(w,r) = g4(w)E(w, 1) (5)
concept was first introduced for free-space or lossless medium. ) o . )

It has been demonstrated in many numerical applications tf&d ca(w) is the complex permittivity of the dispersive PML
the PML can absorb the outgoing propagating waves Vewadlum. The equwalgnt .tlme—domaln relation can be repre-
effectively, but cannot effectively absorb the evanescent wavaa!ted as a convolution integral.
[3]. Fang and Wu modified the original PML in order to apply While Qu_r_dlscussmn is concentrated on the case that only
to a lossy medium [4], [5] in which the stretched coordinatd&€ Permittivity of the FDTD space has frequency dependence,
[6] were used. Gedney extended a uniaxial PML [7] to Ioss;ye similar results will be obtalngd for the case thahas
and dispersive media [8]. It has been shown that these PmIfF€auency dependence by replacing the first terms of (3) and
can effectively absorb both propagating and evanescent waJéa.With 9B.,/0t and 9B, /5t, respectively.

In this paper, a novel ABC for the dispersive medium Following the approach in [1], a wave admittantg of
is derived in the ordinary Cartesian coordinate, based §S PML medium is given by
the concept of Berenger's PML. First, we derive the PML D)
ABC'’s for Debye and Lorentz dispersions. These ABC's Yo = \/Yd%” COSQd)JFKiQy sin” ¢ (6)
are extended to a more general case. It is also shown tigfere, fori = x andy,
the PML for lossy medium can be easily derived from our
PML formulation as a special case. While our discussion
will be restricted to spatially uniform frequency-dependent Yo =
permittivities, frequency-dependent magnetic materials can be

also treated by using the same approach described in this lettefrherefore, the impedance matching conditions of the disper-
sive PML for the medium whose permittivity and permeability

ere

ea(w) + igdi

1 %
o+ Eadi

(7)

Il. MATCHING CONDITION FOR DISPERSIVE MEDIUM aree(w) and p, are given by
Since similar results can be obtained for either two- as well w+ ﬁa(’;i W ) ®)
. . . . ; = 1=2,Y.
- - 1 ’ ’

as three-dimensional cases, we consider the two-dimensional ea(w) + Sou e(w)
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Ill. SINGLE-ORDER POLE DISPERSION C. Multipole Dispersion

In this section, we will derive the PML ABC for the disper- The above discussion can be easily extended to a more
sive media whose complex permittivities are all described lgeneral case. We consider here the following dispersion:
the equations with the first-order poles. These dispersions can N
be used to model a wide variety of materials and are easily Gp
) . ; = oo s — Eoo 17
analyzed by using the recursive convolution scheme [9]. e(s) 50{5 + (€5 = €oo) Z §— Sp (7

n=1

A. Debye Dispersion with the condition tha}>"_, G,,/s,, = —1, ands,, # 0 for all
g In this case, we can obtain the following dispersive PML:

N
eqa(s) = 50{500 + Z . ins } (18)
n=1 n

The permittivity of the Debye material is describe by th
following Debye equation:

fw) = 50{500 (e — sm);} (9)

Lt jw/wy where

wheree; is the static permittivity atv = 0, ¢, is the infinite 1 oy

frequency permittivity, and,, = 1/w,, is the relaxation time. tn = (&5 — €c0) | 1+ 57 €02+ Gn (19)

In order to derive the dispersive PML medium, we assume
the permittivity in the PML in the form and the relation with respect to the electric and magnetic
conductivities is again the same as (12).
ad
gqlw) =¢eol oo + —— - 10 )
a(w) 0< 1 —|—jw/wp) (10) D. Special Case

Up to this point the permittivity of the FDTD space has been
described by a first order pole. However, the above discussion
1 o4 cannot be applied when the conductivity term that is equivalent
ag = (g5 = 500)<1 T Eof ) (11) 0 an additional first-order pole at= 0 exists, because the
P coefficient a,, becomes infinity. Therefore we consider here

Substituting (10) in (8), we obtain the following relations:

%d _ %, (12) the following dispersion:
€0€s H
. . al G, o
B. Lorentz Dispersion e() = €04 oo + (€5 — €00) D ot (0
n=1 n

The permittivity of the Lorentz dispersion is described as
In this case the higher order term must be added to the
(€5 — €0o)w? 13) Permittivity of dispersive PML because the matching condition
w2 + 2jwpdp — w? (13) (8) is not satisfied. Then we let

e(w) = 50{500 +

N
wherg wp is th.e resonant frequency ang), the damping eals) = €04 €oo + (&4 —Eoo)z Gn, +g+b_g 1)
coefficient. Lettingjw = s, and expanding the above equation 5= 5p s s

into a partial fraction, we obtain

n=1
and substituting (21) in (8), we obtain
_ 2 .
e(s) = eo{sm S < S )} (14) by = 774 _ 974 (22)

S1 — 89 §—58 S§— 89 I €0Es

wheres; andss are two complex conjugate poles of (13), and "€ coefiic_ientan is given by (19), and the relation between
we assume that; # s, # 0 for simplicity. oq and oy is the same as (12). _
Comparing (14) and (9) we find that the same discussion!f We lete, = e as a special case, that is the FDTD space

as the Debye dispersion can be applied, and we obtain ipdilled with the lossless permittivity and conductivity terms,
dispersive PML for Lorentz dispersion as follows: then we can easily obtain the PML medium as follows:

o 1 oo
ea(s) = eoes + — + —Q—d. (23)
s 82 eges

sd<s>:so<eoo+ oo ) (15)

S — 851 S — So
Substituting (23) in the equivalent frequency domain equa-
where tion of (1) we obtain

a(Hza; + HZ’ )
_Ty =¢eoessEy + (0 + o4y)Ey + .

004z 1
~E,.
s Y
(24)
The relationship with respect to the electric and magnefidis is very similar to the time domain field equation for the
conductivities is the same as (12). Generalized PML discussed in [4].

an:(ss—sm)<1—i—i od ) (n=1,2). (16)

Sn €0€s
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Fig. 1. Theoretical reflection coefficients of conventional and dispersive

PML'’s. The parameters ar®/ = 2, LAz = 4 x 107%, w, = 27 x 105,
cs = 10, andsss = 4. The required reflection coefficient is sef &f = —60
[dB]. The effective permittivity isce = coc.
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Fig. 2. Reflected waves at a corner of FDTD space. The parameters aJg|

M =2,|R| = —200[dB], s = 9, €oo = 4, € = €00, wp = 27 X 107,
and Ax = Ay = 10 mm.

IV. REFLECTION FROM THE PML

Following [1], the reflection coefficient at the PML bound- [4
ary can be easily obtained. When the conductivity profile in

the PML is chosen asy(z) = omax(753)", the resultant

reflection coefficient of L-layered PML backed by the perfect
conductor for plane wave at normal incidence is approximate%]

by

R=¢ v (jw+ Zwox ﬁ) LAz 25)

wherev(w) is the velocity in the FDTD space.
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Fig. 1 shows the theoretical reflection coefficients for con-
ventional and dispersive PML media. The dispersion is Debye
type. Fig. 2 shows the reflected waves at a corner of FDTD
space when the magnetic line current is located at the center of
200 x 200 computation space including the 16-layered PML's.
It is found that the significant absorption can be achieved.
While not shown here, the significant improvement is obtained
for other dispersions.

V. CONCLUSION

The PML ABC for the spatially uniform dispersive medium,
which is an extension of the original Berenger's PML ABC,
has been proposed. The PML ABC's for Debye and Lorentz
dispersions, and more general cases have been derived. It has
been also shown that the PML for lossy medium can be easily
derived from our PML as a special case. While our discussion
was restricted to the frequency-dependent permittivities, the
extension to the frequency-dependent magnetic materials is
straightforward by using the same approach discussed in this
paper.
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